Journal of Organometallic Chemistry, 323 (1987) 11-20 Elsevier Sequoia S.A., Lausanne – Printed in The Netherlands

ÜBER GEMISCHTE BINDUNGEN IN DER IV. HAUPTGRUPPE

III *. OCTAPHENYLPROPAN-ANALOGA Ph₃SnSiPh₂SnPh₃ UND Ph₃SnGePh₂SnPh₃, KORRELATION ZWISCHEN GEMINALEN NMR-KOPPLUNGEN ²J(Sn-M-Sn) UND NICHT-BINDENDEN Sn · · · Sn-ABSTÄNDEN

STEFAN ADAMS ** und MARTIN DRÄGER*

Institut für Anorganische Chemie und Analytische Chemie der Johannes Gutenberg-Universität, Johann Joachim Becher-Weg 24, D-6500 Mainz (Deutschland)

(Eingegangen den 31. Oktober 1986)

Summary

Reaction of Ph₃SnLi with Ph₂SiCl₂ or Ph₂GeCl₂ at -78° C in THF yields (Ph₃Sn)₂SiPh₂ (1) and (Ph₃Sn)₂GePh₂ (2). The crystal structure of 1 (R = 0.075) exhibits Sn-Si distances of 257.2(4) and 257.9(5) pm, an Sn-Si-Sn angle of 118.5(2)°, and a central C₃Sn-SiC₂-SnC₃ molecular skeleton with symmetry close to C₂. The geminal NMR coupling ²J(¹¹⁹Sn ··· ¹¹⁹Sn) in 1, and in a tri-, tetra- and pentastannane series shows a linear correlation to their respective non-bonded d(Sn ··· Sn) distances (I(t-Bu₂Sn)₄I: 20 Hz/496 pm; 1: 724 Hz/443 pm).

Zusammenfassung

Reaktion von Ph₃SnLi mit Ph₂SiCl₂ oder Ph₂GeCl₂ bei -78° C in THF führt zu (Ph₃Sn)₂SiPh₂ (1) und (Ph₃Sn)₂GePh₂ (2). Im Kristall zeigt 1 (R = 0.075) Sn-Si-Bindungslängen von 257.2(4) und 257.9(5) pm und einen Sn-Si-Sn-Winkel von 118.5(2)° bei annähernder C₂-Symmetrie des C₃Sn-SiC₂-SnC₃ Molekülgerüstes. Die geminale NMR-Kopplungskonstante ²J(¹¹⁹Sn ··· ¹¹⁹Sn) in 1 und einer Reihe weiterer Tri-, Tetra- und Pentastannane korreliert linear mit dem betreffenden nicht-bindendem Abstand d(Sn ··· Sn) (I(t-Bu₂Sn)₄I: 20 Hz/ 496 pm; 1: 724 Hz/443 pm).

^{*} Mitteilung; auszugsweise präsentiert auf 5th Int. Conf. Ge, Sn and Pb [1]. II. Mitteilung siehe Lit. 2.

^{**} Mit Teilen der geplanten Dissertation von S. Adams.

Einleitung

In Fortführung unserer Untersuchungen an propananalogen Germaniumverbindungen [3] berichten wir hier über Synthese und Charakterisierung der entsprechenden Zinn-Verbindungen $Ph_3SnSiPh_2SnPh_3$ und $Ph_3SnGePh_2SnPh_3$. Für diese Verbindungen und eine Reihe von weiteren Polystannanen schlagen wir einen Zusammenhang zwischen geminaler NMR-Kopplungskonstante ${}^2J({}^{119}Sn \cdots {}^{119}Sn)$ und dem zugehörigen nichtbindenden 1,3-Sn \cdots Sn-Abstand vor. Es ist dies eine Alternative zu bisherigen Diskussionen dieser Kopplung in Abhängigkeit von anderen Strukturparametern (z.B. Bindungswinkel [4] oder Taft'sche Konstanten [5]).

Synthese

Bis(triphenylstannyl)diphenylsilan und -german entstehen bei der Umsetzung von Triphenylstannyllithium-Lösung mit Diphenyldichlorsilan [6] bzw. -german bei tiefer Temperatur (Gl. 1 und 2).

$$2Ph_{3}SnLi + Ph_{2}SiCl_{2} \xrightarrow[-78^{\circ}C]{THF} Ph_{3}SnSiPh_{2}SnPh_{3} + 2LiCl$$
(1)

$$2Ph_{3}SnLi + Ph_{2}GeCl_{2} \xrightarrow[-78^{\circ}C]{THF} Ph_{3}SnGePh_{2}SnPh_{3} + 2LiCl$$
(2)

Als Nebenprodukt entstandenes Hexaphenyldistannan Ph_6Sn_2 wird durch fraktionierte Kristallisation abgetrennt. Die Reinheitskontrolle der Kristallfraktionen erfolgt durch Dünnschichtchromatographie.

Röntgenuntersuchungen an (Ph₃Sn)₂SiPh₂ und (Ph₃Sn)₂GePh₂

Beide Substanzen kristallisieren isostrukturell im gleichen Zelltyp, Tabelle 1 stellt die gefundenen Kristalldaten einander gegenüber.

TABELLE 1

KRISTALLDATEN VON (Ph₃Sn)₂SiPh₂ UND (Ph₃Sn)₂GePh₂

	$(Ph_3Sn)_2SiPh_2^a$	$(Ph_3Sn)_2GePh_2^{\ b}$	
Raumgruppe	$P2_1/c$ (Nr. 14)	$P2_{1}/c$ (Nr. 14)	
a (pm)	2068.5(4)	2094	
b (pm)	979.7(2)	988	
c (pm)	2177.2(4)	2196	
β(°)	111.13(2)	111	
V_{EZ} (×10 ⁶ pm ³)	4115	4240	
Mol. Masse	882.32	926.82	
Summenformel	$C_{48}H_{40}SiSn_2$	$C_{48}H_{40}GeSn_2$	
Ζ	4	4	
$d_{\rm ront} ({\rm g cm^{-3}})$	1.42	1.45	
$d_{\rm exp}$ (g cm ⁻³)	1.44	1.49	
μ (cm ⁻¹)	11.63		

^a Mo- K_{α_1} -Strahlung λ 70.926 pm, Diffraktometermessung. ^b Cu- $K_{\overline{\alpha}}$ -Strahlung λ 154.18 pm, Weissenberg-Aufnahmen an einem Zwillingskristall.

LAGE- UND TEMPERATURPARAMETER VON BIS(TRIPHENYLSTANNYL)DIPHENYLSILAN Ph₃SnSiPh₂SnPh₃ MIT STANDARDABWEICHUNGEN (Ph(1) C(11) BIS C(16) USW.; Ph(3) LEICHT FEHLGEORDNET)

Atom	x	у	<i>z</i>	Ū
Sn(1)	0.75096(5)	0.1124(1)	0.28354(5)	
Sn(2)	0.22579(5)	0.4405(1)	0.02156(5)	
Si(1)	0.6965(1)	-0.0069(4)	0.3588(1)	
C(11)	0.8246(7)	-0.0137(15)	0.2609(6)	0.060(3)
C(12)	0.8940(8)	0.0159(17)	0.2888(7)	0.069(4)
C(13)	0.9434(10)	-0.0578(21)	0.2735(9)	0.094(5)
C(14)	0.9214(10)	-0.1673(22)	0.2300(9)	0.099(5)
C(15)	0.8541(9)	-0.1982(19)	0.2006(8)	0.083(4)
C(16)	0.8032(8)	-0.1211(17)	0.2146(7)	0.073(4)
C(21)	0.6641(6)	0.1631(14)	0.1956(6)	0.056(3)
C(22)	0,5987(8)	0.1185(17)	0.1860(7)	0.075(4)
C(23)	0.5420(8)	0.1569(18)	0.1313(8)	0.079(4)
C(24)	0.5488(9)	0.2438(19)	0.0855(8)	0.085(4)
C(25)	0.6141(15)	0.2898(32)	0.0938(13)	0.149(9)
C(26)	0.6736(13)	0.2459(27)	0.1506(12)	0.128(7)
C(31)	0.8079(8)	0.2996(17)	0.3204(7)	0.074(4)
C(32)	0.8383(11)	0.3601(23)	0.2797(10)	0.105(6)
C(33)	0.8773(13)	0.4958(31)	0.3038(13)	0.138(8)
C(34)	0.8753(14)	0.5384(29)	0.3610(14)	0.137(8)
C(35)	0.8498(12)	0.4920(27)	0.3980(11)	0.121(7)
C(36)	0.8110(10)	0.3523(24)	0.3814(10)	0.106(6)
C(41)	0.6592(6)	-0.1741(14)	0.3171(6)	0.053(3)
C(42)	0.5885(7)	-0.2004(15)	0.2910(6)	0.063(3)
C(43)	0.5650(9)	-0.3274(19)	0.2591(8)	0.084(4)
C(44)	0.6086(8)	-0.4248(17)	0.2509(7)	0.076(4)
C(45)	0.6794(8)	-0.3998(17)	0.2789(7)	0.074(4)
C(46)	0.7049(8)	-0.2750(17)	0.3116(7)	0.072(4)
C(51)	0.6273(6)	0.1085(14)	0.3713(6)	0.054(3)
C(52)	0.6247(7)	0.2474(15)	0.3552(6)	0.062(3)
C(53)	0.5794(9)	0.3323(19)	0.3710(8)	0.084(4)
C(54)	0.5372(8)	0.2804(18)	0.4026(7)	0.078(4)
C(55)	0.5383(9)	0.1434(19)	0.4161(8)	0.083(4)
C(56)	0.5840(7)	0.0545(15)	0.4010(6)	0.062(3)
C(61)	0.8696(6)	-0.1615(14)	0.4936(6)	0.056(3)
C(62)	0.8921(10)	-0.2641(21)	0.5401(9)	0.093(5)
C(63)	0.9625(13)	-0.3217(27)	0.5518(12)	0.127(7)
C(64)	0.9971(12)	-0.2707(26)	0.5174(11)	0.120(7)
C(65)	0.9742(12)	-0.1769(25)	0.4653(11)	0.118(7)
C(66)	0.9075(9)	-0.1171(20)	0.4567(8)	0.089(5)
C(71)	0.8044(7)	0.1210(15)	0.5370(6)	0.058(3)
C(72)	0.8703(10)	0.1314(21)	0.5818(9)	0.096(5)
C(73)	0.8937(11)	0.2521(24)	0.6201(10)	0.108(6)
C(74)	0.8517(10)	0.3611(21)	0.6113(9)	0.094(5)
C(75)	0.7842(12)	0.3566(26)	0.5665(11)	0.122(7)
C(76)	0.7615(11)	0.2317(24)	0.5285(10)	0.113(6)
C(81)	0.7109(7)	-0.1853(15)	0.5182(6)	0.062(3)
C(82)	0.6871(8)	-0.3086(18)	0.4882(8)	0.081(4)
C(83)	0.6436(10)	-0.3904(22)	0.5125(10)	0.101(5)
C(84)	0.6290(10)	-0.3463(22)	0.5645(10)	0.101(5)
C(85)	0.6492(9)	-0.2270(20)	0.5928(8)	0.089(5)
C(86)	0.6911(9)	-0.1382(19)	0.5686(8)	0.084(4)

fortgesetzt

Atom	<i>U</i> ₁₁	U ₂₂	U ₃₃	U ₂₃	U13	U ₁₂
Sn(1)	0.0464(5)	0.0474(5)	0.0643(6)	0.0016(4)	0.0167(4)	0.0018(4)
Sn(2)	0.0510(5)	0.0554(6)	0.0548(5)	0.0003(4)	0.0114(4)	-0.0121(4)
Si(1)	0.042(1)	0.051(2)	0.051(1)	0.003(1)	0.013(1)	0.008(1)

TABELLE 2 (Fortsetzung)

(Ph₃Sn)₂GePh₂ neigt stark zur Zwillingsbildung. Bei mehreren Kristallisationen aus verschiedenen Lösungsmitteln wurden keine sauberen Einkristalle erhalten.

Struktur des (Ph₃Sn)₂SiPh₂

Die Struktur wurde gelöst und bis R = 0.075 verfeinert, Tabelle 2 enthält Lageund Temperaturparameter. Figur 1 zeigt das gefundene Molekül (Ph(1) C(11) bis C(16) usw.), in Tabelle 3 sind die wichtigsten Abstände und Winkel aufgeführt.

 $Ph_3SnSiPh_2SnPh_3$ enthält die ersten röntgenographisch in einer metallorganischen Verbindung bestimmten Sn-Si-Abstände. Die Einzelwerte stimmen gut mit der Summe der Bindungsradien in den tetraedrisch koordinierten Elementen (140.5 + 117.6 = 258.1 pm [7]) überein. Die sterisch anspruchsvollen SnPh₃-Gruppen bedingen eine Aufweitung des Sn-Si-Sn-Bindungswinkels (118.5°; 121.3° im analogen Ge₃Ph₈ mit Ge-Ge 244.0 pm [8]). Die Konformation der Substituenten um die Sn-Si-Bindungen ist mit Torsionswinkeln zwischen 50 und 71° gut gestaffelt (Figur 2; Ge₃Ph₈ 49-70° [8]). Sowohl die Abfolge der Bindungswinkel (Tabelle 3) als auch der Torsionswinkel um die Sn-Si-Bindungen (Figur 2) zeigt eine näherungsweise C₂-Symmetrie des Molekülskeletts (2-zählige Achse durch Si). Anders als im analogen (Ph₃Ge)₂GeMe₂ [3] wird diese C₂-Symmetrie in der Verdrillung der Phenylgruppen nicht fortgeführt.

Fig. 1. Gefundenes Ph₃SnSiPh₂SnPh₃-Molekül (Ph(1) C(11) bis C(16) usw.).

ABSTÄNDE (pm) UND BINDUNGSWINKEL (°) IM $\rm Ph_3SnSiPh_2SnPh_3-MOLEKÜL$ MIT STANDARDABWEICHUNGEN

Bindungslängen		Bindungswinkel	
Sn(1)-Si(1)	257.9(5)	Sn(1)-Si(1)-Sn(2)	118.5(2)
Sn(2)-Si(1)	257.2(4)		
Sn(1) C(11)	215(2)	Si(1) - Sn(1) - C(11)	113.1(5)
Sn(1)-C(21)	216(2)	Si(1) - Sn(1) - C(21)	104.7(5)
Sn(1)-C(31)	217(2)	Si(1)-Sn(1)-C(31)	116.8(6)
Sn(2)-C(61)	213(2)	Si(1) - Sn(2) - C(61)	117.2(4)
Sn(2)-C(71)	214(2)	Si(1) - Sn(2) - C(71)	112.4(4)
Sn(2)-C(81)	219(2)	Si(1)-Sn(2)-C(81)	109.1(6)
<u>Sn-C</u>	216	Sn(1)-Si(1)-C(41)	106.5(5)
		Sn(2)-Si(1)-C(41)	108.0(5)
Si(1)-C(41)	190(2)	Sn(1)-Si(1)-C(51)	110.0(5)
Si(1)-C(51)	192(2)	Sn(2)-Si(1)-C(51)	101.5(4)
		C(11) - Sn(1) - C(21)	111.2(6)
		C(11)-Sn(1)-C(31)	116.8(6)
		C(21)-Sn(1)-C(31)	107.5(6)
		C(61)-Sn(2)-C(71)	103.9(6)
		C(61)-Sn(2)-C(81)	109.1(6)
		C(71)-Sn(2)-C(81)	108.5(7)
		C(41)-Si(1)-C(51)	112.4(7)

Fig. 2. Newman-Projektion um die Sn(1)-Si(1)-Achse (links) und die Sn(2)-Si(1)-Achse (rechts) im $Ph_3SnSiPh_2SnPh_3$ -Molekül mit Torsionswinkeln (Grad; Standardabweichungen 0.4-0.7°).

¹¹⁹Sn-NMR-Parameter: Abhängigkeit der geminalen Kopplung vom Sn-Sn-Abstand

Auf der Suche nach empirischen Zusammenhängen zwischen Sn-Sn-NMR-Kopplungskonstanten und Substituenteneffekten in Organopolystannanen ist bisher eine Abhängigkeit der direkten Sn-Sn-Kopplung ${}^{1}J({}^{119}Sn-{}^{119}Sn)$ von Taft'schen

GEMINALE KOPPLUNGSKONSTANTEN ² J(¹¹	¹⁹ Sn-M- ¹¹⁹ Sn) IN ORGANOPOLYSTANNANEN
--	---

Verbindung ^a		$ ^{2}J \Phi(^{\circ})$	Bindungslängen (pm)		Abstand (pm)	
		(Hz)	$\overline{d_1}$	<i>d</i> ₂	$\overline{d(Sn\cdots Sn)}$	
Ph ₃ Sn Sn-t-Bu ₂ Sn-t-Bu ₂ Sn-t-Bu ₂ SnPh ₃	[10]	b 119.0	292	291	502	
I-t-Bu ₂ SnSn-t-Bu ₂ Sn-t-Bu ₂ Sn-t-Bu ₂ I	[9]	20 ° 117.0	290	292	496	
$Ph_3SnSn-t-Bu_2Sn-t-Bu_2Sn-t-Bu_2SnPh_3$	[10]	107 (114.8	283	292	484	
Ph ₃ SnSn-t-Bu ₂ Sn-t-Bu ₂ Sn-t-Bu ₂ SnPh ₃	[10]	107 (112.7	291	285	479	
Ph ₃ SnSn-t-Bu ₂ Sn-t-Bu ₂ SnPh ₃	[10]	248 117.8	282	287	487	
$Ph_3SnSn-t-Bu_2SnPh_3$	[10]	586 ^c 106.9	280	279	449	
Ph ₃ SnSiPh ₂ SnPh ₃		724 ^c 118.5	258	257	443	
$Ph_3SnGePh_2SnPh_3$		725 ^c				

^a Koppelnde Kerne kursiv. ^b Nicht aufgelöst vom Hauptsignal, Halbwertsbreite ca. 5 Hz. ^c Kopplung ${}^{2}J({}^{119}\text{Sn}-{}^{119}\text{Sn}) = \text{Messwert } {}^{2}J({}^{119}\text{Sn}-{}^{117}\text{Sn}) \times 1.0465.$

Substituenten-Konstanten mit befriedigender Korrelation beobachtet worden [5]. Zur geminalen Sn-Sn-Kopplung in den dort untersuchten Tristannanen wird ein merklicher Beitrag der Bindungsgeometrie am Scheitelatom zusätzlich vermutet [5]. Für ${}^{1}J({}^{119}\text{Sn}{-}^{13}\text{C})$ und ${}^{2}J({}^{119}\text{Sn}{-}^{1}\text{H})$ in Methylzinn(IV)verbindungen ist ein Zusammenhang zum Bindungswinkel am zentralen Zinnatom gesichert [4].

Bei der vorliegenden Struktur des Ph₃SnSiPh₂SnPh₃ bemerkten wir eine Korrelation zwischen geminaler NMR-Kopplung ¹¹⁹Sn-M-¹¹⁹Sn und nichtbindenden Sn ··· Sn-Abständen zwischen den koppelnden Kernen, die uns in entsprechender Form zuerst bei Strukturdaten von Verbindungen der Typen I(t-Bu₂Sn)₄I [9] und Ph₃Sn(t-Bu₂Sn)_nSnPh₃ (n = 1, 2, 3) [10] auffiel. Tabelle 4 gibt eine Übersicht der vorhandenen Daten, Figur 3 zeigt eine Auftragung ²J(¹¹⁹Sn-M-¹¹⁹Sn) gegen $d(Sn \cdots Sn)$.

Fig. 3. Korrelation von $|^2 J(^{119}\text{Sn}-\text{M}-^{119}\text{Sn})|$ mit nichtbindendem 1,3-Sn · · · Sn-Abstand.

Es ist ein deutlicher Abfall im Betrag ${}^{2}J({}^{119}Sn-M-{}^{119}Sn)$ mit wachsender Entfernung der koppelnden Kerne voneinander zu erkennen; der in etwa stetige Verlauf lässt auf ein gleiches Vorzeichen der beobachteten Kopplungen schliessen. Da sehr verschiedene Substituenten (rein organisch Ph, t-Bu; metallorganisch Sn-t-Bu₂I, Sn-t-Bu₂SnPh₃, SnPh₃; anorganisch I) die koppelnden Kerne umgeben, widergespiegelt in den stark variierenden Bindungslängen und -winkeln, stellen diese Verbindungen einen repräsentativen Teil der kettenförmigen Polystannane dar. Eine einfache Beziehung zwischen ${}^{2}J$ und dem direkten Bindungswinkel Φ oder direkten Bindungslängen d_1 und d_2 besteht nicht. Die von uns postulierte lineare Abhängigkeit von $d(Sn \cdots Sn)$ berücksichtigt die drei direkten Strukturparameter gemäss der Cosinus-Beziehung in Gl. 3. Die in dieser Arbeit untersuchte Verbindung mit Sn-Si-Sn-Skelett setzt den an Polystannanen beobachteten Trend linear fort und weist auf eine allgemeinere Gültigkeit unserer Annahme hin.

$$d(\text{Sn}\cdots\text{Sn})^2 = d_1^2 + d_2^2 - 2d_1d_2 \cos\Phi$$
(3)

Experimenteller Teil

Ausgangschemikalien: Ph_3SnCl (Hoechst AG, Werk Gendorf), Lithium-Pulver (Metallgesellschaft AG, Frankfurt/M.), Ph_2SiCl_2 (Bayer AG, Leverkusen), Ph_2GeCl_2 [11].

Die Synthesen wurden unter trockener und sauerstofffreier Argon-Atmosphäre durchgeführt. THF wurde mit Benzophenon-Kalium gekocht und frisch destilliert eingesetzt. Zur Reinheitskontrolle wurden DC-Alufolien Kieselgel 60 F254 (Art. 5549, Fa. Merck, Darmstadt) mit Cyclohexan/Toluol (3/1) als Laufmittel verwendet. C/H-Analyse: mikroanalyt. Labor des Institutes für Organische Chemie der Universität Mainz. Schmelzpunkte: Schmelzpunktsmikroskop der Fa. Reichert, Wien. Massenspektren: Spektrometer CH4 der Fa. Varian-MAT; Elektronenstossionisierung 70 eV; Simulation der Isotopenmuster mit dem Programm PEEKS [12]. NMR-Spektren: Spektrometer WP80DS der Fa. Bruker. Schwingungsspektren: IR 4000-400 cm⁻¹, Proben als KBr-Presslinge, Gerät JASCO IRA-2, Fa. Japan Spectroscopic Co; FIR 700-100 cm⁻¹, Proben als Polyethylenpresslinge (4 mg/70 mg), Gerät Bruker IFS 113. Röntgenbeugung: Weissenberg-Kamera der Fa. Huber, Rimsting; Kappa-Diffraktometer CAD4 der Fa. Enraf-Nonius. Rechnungen im Rechenzentrum der Universität Mainz (HB-DPS-8/70) mit SHELX-76 [13] und lokalen Programmen. Dichtebestimmung: Schwebemethode in Thouletscher Lösung.

Darstellung von Triphenylstannyllithium-Lösung [14]

Zu 4.63 g (12 mmol) Ph₃SnCl, gelöst in 10 ml absolutem THF, werden 200 mg (30 mmol) Li-Pulver gegeben und bei Raumtemperatur unter trockener Ar-Atmosphäre kräftig gerührt. Nach einigen Minuten ist ein Anspringen der Reaktion unter Erwärmung und schwacher Grünfärbung zu erkennen. Zur Vervollständigung der Reaktion wird noch 3 h unter ständiger THF-Zugabe (ca. 80 ml) weitergerührt. Abfiltrieren des überschüssigen Li-Pulvers (Fritte GO) unter Schutzgas ergibt eine gebrauchsfertige Lösung.

Darstellung von Bis(triphenylstannyl)diphenylsilan

Zu einer kräftig gerührten Lösung von 1.52 g (6 mmol) Ph_2SiCl_2 in 20 ml THF wird bei $-78^{\circ}C$ die frisch hergestellte Ph_3SnLi -Lösung in 1/2 h zugetropft. Die zuletzt verbleibende leichte Grünfärbung verschwindet beim langsamen Erwärmen auf Raumtemperatur. Nach Hydrolyse mit 100 ml halbkonzentrierter wässriger NH₄Cl-Lösung wird die organische Phase abgetrennt, mit Na₂SO₄ getrocknet und das Lösungsmittel abdestilliert. Das anfangs entstehende Öl verfestigt sich beim Abkühlen zu einer niedrig schmelzenden Masse. Fraktionierte Kristallisation aus PE/CHCl₃ (1/1) ergibt 1.44 g (1.6 mmol; 27% d. Th.) noch mit Spuren Ph_6Sn_2 verunreinigtes Rohprodukt vom Schmelzpunkt 185–188°C. Die reine Substanz (farblose Stäbchen) verliert bei 186°C ihre äussere Form und schmilzt bei 192–198°C (Lit. 28%, 188°C sintern, Fp. 198–199°C [6]).

Analyse: Gef.: C, 65.25; H, 4.83. $C_{48}H_{40}SiSn_2$ (882.32) ber.: C, 65.34; H, 4.57%. Schwingungsspektren: Ph-q: 1097w, 1090sh, 1072m; Ph-r 660vw; Ph-y: 488w, 458sh, 449st cm⁻¹ (Benennung q, r und y nach [15]). Massenspektrum (Probenheizung 162°C): Ionen (*m/e* des intensivsten Peaks im Isotopenmuster, % rel. Intensität) $Sn_2SiPh_8^{++}$ (*M*⁺⁺ 882, 4), $Sn_2Ph_6^{++}$ (700, 2), $Sn_2Ph_4^{++}$ (546, 34), $SnSiPh_5^{++}$ (533, 29), $SnSiPh_4^{++}$ (456, 62), $SnPh_3^{++}$ (351, 53), $SiPh_4^{++}$ (336, 41), $SnPh_2^{++}$ (274, 20), $SiPh_3^{++}$ (260, 100), $SnPh^{+}$ (197, 65), $SiPh_2^{-+}$ (182, 62), $SiC_{12}H_9^{++}$ (181, 25), Ph_2^{++} (154, 16), $SiPh_3^{-2+}$ (130, 12), Sn^{++} (120, 25), $SiPh^{+}$ (105, 34).

Darstellung von Bis(triphenylstannyl)diphenylgerman

Es wird analog zur Darstellung von Ph_8Sn_2Si verfahren und die filtrierte Ph_3SnLi -Lösung (12 mmol) bei -78 °C langsam zu einer Lösung von 1.80 g (6.0 mmol) Ph_2GeCl_2 in 25 ml THF getropft. Aufarbeiten und fraktionierte Kristallisation führt zu 2.11 g (2.3 mmol, 38% d.Th.) mit etwas Ph_6Sn_2 verunreinigtem Rohprodukt. Umkristallisieren aus C_6H_{12}/C_6H_6 (1/1) ergibt die reine Substanz (farblose 6-eckige Plättchen) vom Schmelzpunkt 190–193 °C, die bei 168–170 °C eine Umwandlung unter Erhalt der Kristallform zeigt (Lit. Schmelzpunkt 169–178 °C [16]).

Analyse: Gef.: C, 62.24; H, 4.55. $C_{48}H_{40}GeSn_2$ (926.82) ber.: C, 62.21, H, 4.35%. Schwingungsspektren: Ph-q: 1082w, 1071m; Ph-r: 670vw, 655vw; Ph-y: 462st, 451sh, 446vst cm⁻¹. Massenspektrum (Probenheizung 250°C): Ionen (*m/e* des intensivsten Peaks im Isotopenmuster, % rel. Intensität) $Sn_2GePh_8^{++}$ (M^{++} 926, 3), $SnGePh_5^{++}$ (577, 7), $Sn_2Ph_4^{++}$ (546, 14), $SnGePh_4^{++}$ (500, 30), $SnPh_3^{++}$ (351, 35), $GePh_3^{++}$ (305, 100), $SnPh_2^{++}$ (274, 14), $GePh_2^{++}$ (228, 14), $GeC_{12}H_9^{++}$ (227, 14), $SnPh^{++}$ (197, 63), Ph_2^{++} (154, 38), $GePh^{+}$ (151, 19), Sn^{++} (120, 26).

¹¹⁹Sn-, ¹³C- und ²⁹Si-NMR Daten von (Ph₃Sn)₂SiPh₂ und (Ph₃Sn)₂GePh₂

Tabelle 5 fasst die an Bis(triphenylstannyl)diphenylsilan und -german beobachteten ¹¹⁹Sn-, ¹³C- und ²⁹Si-NMR-Parameter zusammen. Es wurden gesättigte Lösungen (230 mg/2 ml (Ph₈SiSn₂) bzw. 300 mg/1.6 ml (Ph₈GeSn₂)) in CDCl₃ bei Raumtemperatur vermessen.

Strukturbestimmung von (Ph₃Sn)₂SiPh₂

Die Bestimmung der Reflexintensitäten erfolgte an einem Kristall der Flächenausbildung {100, 010 und 001} mit den Abmessungen $0.10 \times 0.35 \times 0.14$ mm, der in eine Glaskapillare eingeschmolzen war. Gemessen wurde im $\omega/2\vartheta$ -Modus

	(Ph ₃ Sn) ₂ SiPh	2	(Ph ₃ Sn) ₂ GePh	1 ₂	
	Ph ₃ Sn	Ph ₂ Si	Ph ₃ Sn	Ph ₂ Ge	
$\delta(^{119}$ Sn)	- 167		-147		-
$^{2}J(^{119}\text{Sn}-^{119}\text{Sn})^{d}$	724		725		
$\delta(C_{inso})$	139.1	133.9	139.1	138.0	
¹ J	413 ª	22.3 ^b	419 ^a		
^{2}J	10.6 ^b				
^{3}J	6.2 <i>a</i>		12.2 ª		
$\delta(C_{ortho})$	137.6	136.5	137.5	136.0	
^{2}J	37.3 ^a		38.3 ^a		
³ J		17.9 ^a		16.5 <i>a</i>	
$\delta(C_{meta})$	128.4 °	128.4 ^c	128.5 °	128.5 ^c	
³ J	46.6 ^a		47.7 °		
$\delta(C_{nara})$	128.4 °	128.4 °	128.5 °	128.6	
δ(Si)		- 26.7			
$^{1}J(^{119}Sn-^{29}Si)$		515			

¹¹⁹Sn-, ¹³C- UND ²⁹Si-DATEN DER VERBINDUNGEN (Ph_3Sn)₂SiPh₂ UND (Ph_3Sn)₂GePh₂ (δ in ppm; J in Hz)

 $a^{n}J(^{119}\text{Sn}-^{13}\text{C})$. $b^{n}J(^{29}\text{Si}-^{13}\text{C})$. $c^{n}Signale im jeweiligen Spektrum nicht aufgelöst. <math>d^{n}Kopplung^{2}J(^{119}\text{Sn}-^{119}\text{Sn}) = \text{Messwert }^{2}J(^{119}\text{Sn}-^{117}\text{Sn}) \times 1.0465.$

mit monochromatisierter Mo- K_{α} -Strahlung. Der Intensitätsverlauf dreier Standardreflexe (Messinstabilität des Diffraktometers 0.03) zeigte einen isotropen Abfall um 12%, an den alle Reflexe linear angepasst wurden. Nach den üblichen Korrekturen verblieben 8040 unabhängige $|F|^2$ -Werte (bis sin $\vartheta/\lambda = 0.00617 \text{ pm}^{-1}$); 4063 davon hatten $I < 2\sigma(I)$ und wurden ausser zur Bestimmung der *E*-Werte nicht weiter verwendet.

Die Auswertung der Patterson-Synthese ergab die zwei unabhängigen Sn-Lagen, zwei Fourier-Synthesen zunächst die Si-Position und dann alle C-Atome. Verfeinert wurden die C-Atome isotrop, die Sn- und Si-Atome anisotrop (Vollmatrix, 222 Parameter bei 3977 Observablen): Konvergenz bei R = 0.075 (gewichtetes R = 0.099, Gewichtssetzung gemäss $w = k/(\sigma^2(F) + g \cdot F^2)$ mit g = 0.0033). Tabellen der gemessenen und berechneten Strukturamplituden können angefordert werden.

Dank

Wir danken der Deutschen Forschungsgemeinschaft (Projekt Dr 109/6-3) und dem Fonds der Chemischen Industrie für die Unterstützung dieser Untersuchungen. Der Firma Hoechst AG (Werk Gendorf) gilt unser Dank für eine Spende an $Ph_3SnCl.$

Literatur

- 1 S. Adams und M. Dräger, 5th Int. Conf. Organomet. and Coord. Chem. Ge, Sn, Pb, Abstr., (1986) 46.
- 2 N. Kleiner und M. Dräger, Z. Naturforsch. B, 40 (1985) 477.
- 3 M. Dräger und D. Simon, J. Organomet. Chem., 306 (1986) 183.
- 4 T.P. Lockhart und W.F. Manders, Inorg. Chem., 25 (1986) 892; T.P. Lockhart, W.F. Manders und F.E. Brinckman, J. Organomet. Chem., 286 (1985) 153.
- 5 T.N. Mitchell und G. Walter, J. Chem. Soc., Perkin Trans. II, (1977) 1842.

- 6 E. Wiberg, O. Stecher, H.J. Andrascheck, L. Kreuzbichler und E. Staude, Angew. Chem., 75 (1963) 516; Angew. Chem., Int. Ed. Engl., 2 (1963) 507.
- 7 J. Donohue, The Structures of the Elements, John Wiley & Sons, New York-London-Sydney-Toronto, 1974, S. 262 und 273.
- 8 S. Roller, D. Simon und M. Dräger, J. Organomet. Chem., 301 (1986) 27.
- 9 S. Adams und M. Dräger, J. Organomet. Chem., 288 (1985) 295.
- 10 S. Adams und M. Dräger, Publikation in Vorbereitung.
- 11 K. Kühlein und W.P. Neumann, Liebigs Ann. Chem., 702 (1967) 17.
- 12 B. Mattson und E. Carberry, J. Chem. Educ., 50 (1973) 511.
- 13 G. Sheldrick, Cambridge 1976.
- 14 H. Gilman, O.L. Marrs und S.-Y. Sim, J. Org. Chem., 27 (1962) 4232.
- 15 D.H. Whiffen, J. Chem. Soc., (1956) 1350.
- 16 H.M.J.C. Creemers und J.G. Noltes, J. Organomet. Chem., 7 (1967) 237.